71 research outputs found

    Dynamic Peierls-Nabarro equations for elastically isotropic crystals

    Full text link
    The dynamic generalization of the Peierls-Nabarro equation for dislocations cores in an isotropic elastic medium is derived for screw, and edge dislocations of the `glide' and `climb' type, by means of Mura's eigenstrains method. These equations are of the integro-differential type and feature a non-local kernel in space and time. The equation for the screw differs by an instantaneous term from a previous attempt by Eshelby. Those for both types of edges involve in addition an unusual convolution with the second spatial derivative of the displacement jump. As a check, it is shown that these equations correctly reduce, in the stationary limit and for all three types of dislocations, to Weertman's equations that extend the static Peierls-Nabarro model to finite constant velocities.Comment: 14 pages, 1 figure. A few minor typos in published version corrected here (in red

    Field distributions and effective-medium approximation for weakly nonlinear media

    Full text link
    An effective-medium theory is proposed for random weakly nonlinear dielectric media. It is based on a new gaussian approximation for the probability distributions of the electric field in each component of a multi-phase composite. These distributions are computed to linear order from a Bruggeman-like self-consistent formula. The resulting effective-medium formula for the nonlinear medium reduces to Bruggeman's in the linear case. It is exact up to second order in a weak-disorder expansion, and close to the exact result in the dilute limit (in particular, it is exact for d=1 and d=infinity. In a high contrast situation, the noise exponents are kappa=kappa'=0 near the percolation threshold. Numerical results are provided for different weak nonlinearities.Comment: 12 pages, 6 eps figure

    Self-Consistent Effective-Medium Approximations with Path Integrals

    Full text link
    We study effective-medium approximations for linear composite media by means of a path integral formalism with replicas. We show how to recover the Bruggeman and Hori-Yonezawa effective-medium formulas. Using a replica-coupling ansatz, these formulas are extended into new ones which have the same percolation thresholds as that of the Bethe lattice and Potts model of percolation, and critical exponents s=0 and t=2 in any space dimension d>= 2. Like the Bruggeman and Hori-Yonezawa formulas, the new formulas are exact to second order in the weak-contrast and dilute limits. The dimensional range of validity of the four effective-medium formulas is discussed, and it is argued that the new ones are of better relevance than the classical ones in dimensions d=3,4 for systems obeying the Nodes-Links-Blobs picture, such as random-resistor networks.Comment: 18 pages, 6 eps figure

    Generalized two-body self-consistent theory of random linear dielectric composites: an effective-medium approach to clustering in highly-disordered media

    Full text link
    Effects of two-body dipolar interactions on the effective permittivity/conductivity of a binary, symmetric, random dielectric composite are investigated in a self-consistent framework. By arbitrarily splitting the singularity of the Green tensor of the electric field, we introduce an additional degree of freedom into the problem, in the form of an unknown "inner" depolarization constant. Two coupled self-consistent equations determine the latter and the permittivity in terms of the dielectric contrast and the volume fractions. One of them generalizes the usual Coherent Potential condition to many-body interactions between single-phase clusters of polarizable matter elements, while the other one determines the effective medium in which clusters are embedded. The latter is in general different from the overall permittivity. The proposed approach allows for many-body corrections to the Bruggeman-Landauer (BL) scheme to be handled in a multiple-scattering framework. Four parameters are used to adjust the degree of self-consistency and to characterize clusters in a schematic geometrical way. Given these parameters, the resulting theory is "exact" to second order in the volume fractions. For suitable parameter values, reasonable to excellent agreement is found between theory and simulations of random-resistor networks and pixelwise-disordered arrays in two and tree dimensions, over the whole range of volume fractions. Comparisons with simulation data are made using an "effective" scalar depolarization constant that constitutes a very sensitive indicator of deviations from the BL theory.Comment: 14 pages, 7 figure

    Fast Fourier Transform computations and build-up of plastic deformation in 2D, elastic-perfectly plastic, pixelwise disordered porous media

    Full text link
    Stress and strain fields in a two-dimensional pixelwise disordered system are computed by a Fast Fourier Transform method. The system, a model for a ductile damaged medium, consists of an elastic-perfectly matrix containing void pixels. Its behavior is investigated under equibiaxial or shear loading. We monitor the evolution with loading of plastically deformed zones, and we exhibit a nucleation / growth / coalescence scenario of the latter. Identification of plastic ``clusters'' is eased by using a discrete Green function implementing equilibrium and continuity at the level of one pixel. Observed morphological regimes are put into correspondence with some features of the macroscopic stress / strain curves.Comment: 6 pages, 5 figures. Presented at the "11th International Symposium On Continuum Models and Discrete Systems (CMDS 11)" (Ecole des Mines, Paris, July 30- August 3 2007

    On the gradient of the Green tensor in two-dimensional elastodynamic problems, and related integrals: Distributional approach and regularization, with application to nonuniformly moving sources

    Full text link
    The two-dimensional elastodynamic Green tensor is the primary building block of solutions of linear elasticity problems dealing with nonuniformly moving rectilinear line sources, such as dislocations. Elastodynamic solutions for these problems involve derivatives of this Green tensor, which stand as hypersingular kernels. These objects, well defined as distributions, prove cumbersome to handle in practice. This paper, restricted to isotropic media, examines some of their representations in the framework of distribution theory. A particularly convenient regularization of the Green tensor is introduced, that amounts to considering line sources of finite width. Technically, it is implemented by an analytic continuation of the Green tensor to complex times. It is applied to the computation of regularized forms of certain integrals of tensor character that involve the gradient of the Green tensor. These integrals are fundamental to the computation of the elastodynamic fields in the problem of nonuniformly moving dislocations. The obtained expressions indifferently cover cases of subsonic, transonic, or supersonic motion. We observe that for faster-than-wave motion, one of the two branches of the Mach cone(s) displayed by the Cartesian components of these tensor integrals is extinguished for some particular orientations of source velocity vector.Comment: 25 pages, 6 figure

    Fourier-based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields

    Get PDF
    A modified Green operator is proposed as an improvement of Fourier-based numerical schemes commonly used for computing the electrical or thermal response of heterogeneous media. Contrary to other methods, the number of iterations necessary to achieve convergence tends to a finite value when the contrast of properties between the phases becomes infinite. Furthermore, it is shown that the method produces much more accurate local fields inside highly-conducting and quasi-insulating phases, as well as in the vicinity of the phases interfaces. These good properties stem from the discretization of Green's function, which is consistent with the pixel grid while retaining the local nature of the operator that acts on the polarization field. Finally, a fast implementation of the "direct scheme" of Moulinec et al. (1994) that allows for parcimonious memory use is proposed.Comment: v2: `postprint' document (a few remaining typos in the published version herein corrected in red; results unchanged

    Localization of elastic deformation in strongly anisotropic, porous, linear materials with periodic microstructures: exact solutions and dilute expansions

    Full text link
    Exact solutions are derived for the problem of a two-dimensional, infinitely anisotropic, linear-elastic medium containing a periodic lattice of voids. The matrix material possesses either one infinitely soft, or one infinitely hard loading direction, which induces localized (singular) field configurations. The effective elastic moduli are computed as functions of the porosity in each case. Their dilute expansions feature half-integer powers of the porosity, which can be correlated to the localized field patterns. Statistical characterizations of the fields, such as their first moments and their histograms are provided, with particular emphasis on the singularities of the latter. The behavior of the system near the void close packing fraction is also investigated. The results of this work shed light on corresponding results for strongly nonlinear porous media, which have been obtained recently by means of the ``second-order'' homogenization method, and where the dilute estimates also exhibit fractional powers of the porosity.Comment: 22 pages, 10 figure
    corecore